Similar Triangles

$:$ Then $\mid:$ Now $\mid:$ Why?

- You used the AAS, SSS, and SAS Congruence Theorems to prove triangles congruent. (Lessons 4-4 and 4-5)

Identify similar triangles using the $A A$ Similarity Postulate and the SSS and SAS Similarity Theorems.

Use similar triangles to solve problems.

\square

1Identify Similar Triangles The example suggests that two triangles are similar it two pairs of corresponding angles are congruent.

Postulate 7.1 Angle-Angle (AA) Similarity

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Example If $\angle A \cong \angle F$ and $\angle B \cong \angle G$, then

$$
\triangle A B C \sim \triangle F G H .
$$

Exemple 1 Use the AA Similarity Postulate

Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.
a.

b.

a. Since $m \angle L=m \angle M, \angle L \cong \angle M$. By the Triangle Sum Theorem, $57+48+m \angle K=18$ so $m \angle K=75$. Since $m \angle P=75, \angle K \cong \angle P$. So, $\triangle L J K \sim \triangle M Q P$ by AA Similarity.
b. $\angle R S X \cong \angle W S T$ by the Vertical Angles Theorem. Since $\overline{R X} \| \overline{T W}, \angle R \cong \angle W$. So, $\triangle R S X \sim \triangle W S T$ by AA Similarity.

GuidedPractice

1A.

1 B.

You can use the AA Similarity Postulate to prove the following two theorems.

Theorems Points on Perpendicular Bisectors

7.2 Side-Side-Side (SSS) Similarity

 If the corresponding side lengths of two triangles are proportional, then the triangles are similar.Example If $\frac{J K}{M P}=\frac{K L}{P Q}=\frac{L J}{Q M}$, then

$$
\triangle J K L \sim \triangle M P Q
$$

7.3 Side-Angle-Side (SAS) Similarity

If the lengths of two sides of one triangle are proportional to the lengths of two corresponding sides of another triangle and the included angles are congruent, then the triangles are similar.
Example if $\frac{R S}{X Y}=\frac{S T}{Y Z}$ and $\angle S \cong \angle Y$, then
$\triangle R S T \sim \triangle X Y Z$.

You will prove Theorem 7.3 in Exercise 25.

Proof Theorem 7.2

Given: $\frac{A B}{F G}=\frac{B C}{G H}=\frac{A C}{F H}$

dyTip

responding Sides To erarmine which sides of no triangles correspond, egin by comparing the est sides, then the next gest sides, and finish by ngaring the shortest sides.

Prove: $\triangle A B C \sim \triangle F G H$

Paragraph Proof:

Locate J on $\overline{F G}$ so that $J G=A B$.
Draw $\overline{J K}$ so that $\overline{J K} \| \overline{F H}$.
Label $\angle G J K$ as $\angle 1$.

Since $\angle G \cong \angle G$ by the Reflexive
Property and $\angle 1 \cong \angle F$ by the

Corresponding Angles Postulate,
$\triangle G J K \sim \triangle G F H$ by the AA
Similarity Postulate.
By the definition of similar polygons, $\frac{J G}{F G}=\frac{G K}{G H}=\frac{J K}{F H}$. By substitution,
$\frac{A B}{F G}=\frac{G K}{G H}=\frac{J K}{F H}$.
Since we are also given that $\frac{A B}{F G}=\frac{B C}{G H}=\frac{A C}{F H}$, we can say that $\frac{G K}{G H}=\frac{B C}{G H}$ and $\frac{J K}{F H}=\frac{A C}{F H}$. This means that $G K=B C$ and $J K=A C$, so $\overline{G K} \cong \overline{B C}$ and $\overline{J K} \cong \overline{A C}$.

By SSS, $\triangle A B C \cong \triangle J G K$.
By CPCTC, $\angle B \cong \angle G$ and $\angle A \cong \angle 1$. Since $\angle 1 \cong \angle F, \angle A \cong \angle F$ by the
Transitive Property. By AA Similarity, $\triangle A B C \sim \triangle F G H$.

StudyTip

Draw Diagrams It is helpful to redraw similar triangles so that the corresponding side lengths have the same orientation.

Test-TakingTip

Identifying Nonexamples Sometimes test questions require you to find a nonexample, as in this case. You must check each option until you find a valid nonexample. If you would like to check your answer, confirm that each additional option is correct.

Example 2 Use the SSS and SAS Similarity Theorems
Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.
a.

b.

$\frac{P R}{S R}=\frac{8}{20}$ or $\frac{2}{5}, \frac{P Q}{S T}=\frac{6}{15}$ or $\frac{2}{5}$, and $\frac{Q R}{T R}=\frac{5}{12.5}=\frac{50}{125}$
or $\frac{2}{5}$. So, $\triangle P Q R \sim \triangle S T R$ by the SSS Similarity Theorem.

By the Reflexive Property, $\angle A \cong \angle A$.
$\frac{A F}{A B}=\frac{10}{10+5}=\frac{10}{15}$ or $\frac{2}{3}$ and $\frac{A E}{A C}=\frac{8}{8+4}=\frac{8}{12}$ or $\frac{2}{3}$.
Since the lengths of the sides that include $\angle A$ are proportional, $\triangle A E F \sim \triangle A C B$ by the SAS Similarity Theorem.

GuidedPractice

2A.

2B.

You can decide what is sufficient to prove that two triangles are similar.

lest Example 3

In the figure, $\angle A D B$ is a right angle. Which of the following would not be sufficient to prove that $\triangle A D B \sim \triangle C D B$?
A $\frac{A D}{B D}=\frac{B D}{C D}$
C $\angle A B D \cong \angle C$
B $\frac{A B}{B C}=\frac{B D}{C D}$
D $\frac{A D}{B D}=\frac{B D}{C D}=\frac{A B}{B C}$

Read the Test Item

You are given that $\angle A D B$ is a right angle and asked to identify which additional information would not be enough to prove that $\triangle A D B \sim \triangle C D B$.

Solve the Test Item

Since $\angle A D B$ is a right angle, $\angle C D B$ is also a right angle. Since all right angles are congruent, $\angle A D B \cong \angle C D B$. Check each answer choice until you find one that does not supply a sufficient additional condition to prove that $\triangle A D B \sim \triangle C D B$.

Choice A: If $\frac{A D}{B D}=\frac{B D}{C D}$ and $\angle A D B \cong \angle C D B$, then $\triangle A D B \sim \triangle C D B$ by SAS Similarity.

Choice B: If $\frac{A B}{B C}=\frac{B D}{C D}$ and $\angle A D B \cong \angle C D B$, then we cannot conclude that $\triangle A D B \sim \triangle C D B$ because the included angle of side $\overline{A B}$ and $\overline{B D}$ is not $\angle A D B$. So the answer is B.

GuidedPractice

3. If $\triangle J K L$ and $\triangle F G H$ are two triangles such that $\angle J \cong \angle F$, which of the following would be sufficient to prove that the triangles are similar?
F $\frac{K L}{G H}=\frac{J L}{F H}$
G $\frac{J L}{J K}=\frac{F H}{F G}$
$\mathbf{H} \frac{J K}{F G}=\frac{K L}{G H}$
J $\frac{J L}{J K}=\frac{G H}{F G}$

2
Use Similar Triangles Like the congruence of triangles, similarity of triangles is reflexive, symmetric, and transitive.

Theorem 7.4 Properties of Similarity

Reflexive Property of Similarity $\quad \triangle A B C \sim \triangle A B C$
Symmetric Property of Similarity If $\triangle A B C \sim \triangle D E F$, then $\triangle D E F \sim \triangle A B C$.
Transitive Property of Similarity If $\triangle A B C \sim \triangle D E F$, and $\triangle D E F \sim \triangle X Y Z$, then $\triangle A B C \sim \triangle X Y Z$.

You will prove Theorem 7.4 in Exercise 26.

Example 4 Parts of Similar Triangles

Find $B E$ and $A D$.
Since $\overline{B E} \| \overline{C D}, \angle A B E \cong \angle B C D$ and $\angle A E B \cong \angle E D C$ because they are corresponding angles. By AA Similarity, $\triangle A B E \sim \triangle A C D$.

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{B E}{C D} \\
\frac{3}{5} & =\frac{x}{3.5}
\end{aligned}
$$

Definition of Similar Polygons
$A C=5, C D=3.5, A B=3, B E=x$

$$
\begin{aligned}
3.5 \cdot 3 & =5 \cdot x \\
2.1 & =x \\
\frac{A C}{A B} & =\frac{A D}{A E} \\
\frac{5}{3} & =\frac{y+3}{y} \\
5 \cdot y & =3(y+3) \\
5 y & =3 y+9 \\
2 y & =9 \\
y & =4.5
\end{aligned}
$$

GuidedPractice

Find each measure.

4A. $Q P$ and $M P$

4B. WR and RT

Problem-SolvingTip

Reasonable Answers When you have solved a problem, check your answer for reasonableness. In this example, Hallie's shadow is a little more than half her height. The coaster's shadow is also a little more than half of the height you calculated. Therefore, the answer is reasonable.

Real-Word Example 5 Indirect Measurement

ROLLER COASTERS Hallie is estimating the height of the Superman roller coaster in Mitchellville, Maryland. She is 5 feet 3 inches tall and her shadow is 3 feet long. If the length of the shadow of the roller coaster is 40 feet, how tall is the roller coaster?

Understand Make a sketch of the situation. 5 feet 3 inches is equivalent to 5.25 feet.

Plan In shadow problems, you can assume that the angles formed by the Sun's rays with any two objects are congruent and that the two objects form the sides of two right triangles.

Since two pairs of angles are congruent, the right triangles are similar by the AA Similarity Postulate. So, the following proportion can be written.
$\frac{\text { Hallie's height }}{\text { coaster's height }}=\frac{\text { Hallie's shadow length }}{\text { coaster's shadow length }}$
Solve Substitute the known values and let $x=$ roller coaster's height.

$$
\begin{aligned}
\frac{5.25}{x} & =\frac{3}{40} \\
3 \cdot x & =40(5.25) \\
3 x & =210 \\
x & =70
\end{aligned}
$$

Cross Products Property
Simplify.
Divide each side by 3 .

The roller coaster is 70 -feet tall.
Check The roller coaster's shadow length is $\frac{40 \mathrm{ft}}{3 \mathrm{ft}}$ or about 13.3 times Hallie's shadow length. Check to see that the roller coaster's height is about 13.3 times Hallie's height. $\frac{70 \mathrm{ft}}{5.25 \mathrm{ft}} \approx 13.3 \mathrm{~V}$

GuidedPractice

5. BUILDINGS Adam is standing next to the Palmetto Building in Columbia, South Carolina. He is 6 feet tall and the length of his shadow is 9 feet. If the length of the shadow of the building is 322.5 feet, how tall is the building?

ConceptSummary Triangle Similarity

AA Similarity Postulate

If $\angle A \cong \angle X$ and $\angle C \cong \angle Z$,
then $\triangle A B C \sim \triangle X Y Z$.

SSS Similarity Theorem

If $\frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{C A}{Z X}$
then $\triangle A B C \sim \triangle X Y Z$.

SAS Similarity Theorem

If $\angle A \cong \angle X$ and $\frac{A B}{X Y}=\frac{C A}{Z X}$,
then $\triangle A B C \sim \triangle X Y Z$.

